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The standard van der Pol oscillator is modelled by a differential equation for which
the elastic restoring force is ‘‘harmonic,’’ i.e., it is a linear function of the dependence
variable [1],

.xx þ x ¼ eð1� x2Þ ’xx; ð1Þ
where e is a positive parameter. Mathematical analysis shows that equation 1 has an
essentially unique, stable limit-cycle toward which all other solutions approach as t ! 1:
However, it is of interest to consider modifications to equation (1) in which the dependent
variable x and/or its first derivative occur to some fractional power. Such non-linear
differential equations will be called fractional van der Pol oscillator equations. Particular
examples include the following two equations:

.xx þ x1=3 ¼ eð1� x2Þ ’xx; ð2Þ

.xx þ x ¼ eð1� x2Þð ’xxÞ1=3: ð3Þ
Equation (2) has been studied by Mickens [2] using phase-space techniques and the
application of the Li!eenard–Levinson–Smith theorem [3]; the method of harmonic balance
allowed the calculation of an analytic approximation to the limit-cycle solution. The main
purpose of this Letter-to-the-Editor is to investigate equation (3).

To proceed, write equation (3) as a system of two first order ODEs:

dx

dt
¼ y;

dy

dt
¼ �x þ eð1� x2Þy1=3: ð4Þ

It follows that ð %xx; %yyÞ ¼ ð0; 0Þ is the only fixed-point. Using the same energy argument, as
presented in reference [2], it also follows that this fixed-point is unstable.

A comparison of equation (3) with the structural form of the differential equation
occurring in the Li!eenard–Levinson–Smith theorem [3] clearly shows that this theorem
cannot be applied to it. However, the calculation of the nullclines [1] for equation (3), in
the ðx; yÞ phase space, gives

(1) dy=dx ¼ 0; along the curve

y1=3 ¼ x

eð1� x2Þ; ð5Þ

(2) dy=dx ¼ 1; along y ¼ 0 or the x-axis. With this information, it is clearly seen that the
trajectories in phase space for equation (3) are topologically the same as for the
standard van der Pol equation. Hence, a unique and stable limit-cycle is expected to
exist for equation (3).
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The method of slowly varying amplitude and phase [3], sometimes known as the first
approximation of Krylov and Bogoliubov [4], can be used to determine an analytical
approximation to the limit-cycle solution of equation (3). For the non-linear differential
equation

.xx þ x ¼ ef ðx; ’xxÞ; 05e51; ð6Þ

a first approximation (in e) to the periodic solutions is given by

xðt; eÞ ’ aðt; eÞsin½t þ fðt; eÞ
; ð7Þ

where aðt; eÞ and fðt; eÞ are calculated from

da

dt
¼ e

2p

� �Z 2p

0

f ða sin c; a cos cÞcos c dc; ð8aÞ

df
dt

¼ e
2p

� �Z 2p

0

f ða sinc; a cos cÞsin c dc: ð8bÞ

For the particular case of equation (3), the function f ðx; ’xxÞ becomes, in equations (8), the
expression

f ðx; ’xxÞ ! f ða sin c; a cos cÞ ¼ ð1� a2 sin2 cÞða cos cÞ1=3: ð9Þ

The way to get around the difficulty posed by the one-third power cosine term is to expand
it into a Fourier series. A priori, this expansion is expected to take the form

ðcos cÞ1=3 ¼ b1 cos cþ b2 cos 3cþ b3 cos 5cþ � � � : ð10Þ

These coefficients can be easily determined by numerically integrating the standard
Fourier integral expressions. Carrying out this procedure [5], the following values are
obtained: b1 ¼ 1�15946; b2 ¼ �0�231888; b3 ¼ 0�11594; b4 ¼ �0�07378; etc. Substi-
tuting equation (10) into equations (8), the integrations can be done to give

da

dt
¼ e

2

� �
a1=3 b1 � ðb1 � b2Þ

a2

4

� �� �
; ð11Þ

df
dt

¼ 0: ð12Þ

The second equation can be easily solved to give fðt; eÞ ¼ f0; where f0 is a constant.
Consequently, to this level of calculation, the angular frequency of the period solution is
2p; which is the same as that for the free oscillator, i.e., the case where e ¼ 0:Note that this
result also holds true for the standard van der Pol equation [3, 4] given by equation (1).

As for the amplitude, examination of equation (11) shows that it has two fixed-points,
the first at %aað1Þ ¼ 0; the second at

%aað2Þ ¼ 2
b1

b1 � b2

� �1=2

: ð13Þ

Since b1 > 0 and b250; it follows that

%aað2Þ52 ð14Þ

and noted that for the standard van der Pol equation the value for the amplitude of the
non-trivial limit-cycle, to this level of calculation, is %aa ¼ 2: Further inspection of the right-
hand side of equation (11) shows that the fixed-point %aað1Þ is unstable, while that at %aað2Þ is
stable. Putting all of these results together gives the following approximation to the



Figure 1. The parameter values are h ¼ Dt ¼ 0�01 and e ¼ 0�10; with initial conditions, x0 ¼ 3; y0 ¼ 1:
(a) Phase-plane plot of x versus y; (b) plot of xk ¼ xðtkÞ versus k; where tk ¼ hk:
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periodic solution of equation (3):

xðt; eÞ ’ 2
b1

b1 � b2

� �1=2

sinðt þ f0Þ: ð15Þ

Using the numerically derived values for b1 and b2; the amplitude is

a ¼ 2
b1

b1 � b2

� �1=2

¼ 1�82574: ð16Þ

A confirmation of the above analysis, regarding the behavior of the solutions to
equation (3), was done by numerical integration of the differential equation for many
values of the initial conditions, x0 ¼ xð0Þ and y0 ¼ dxð0Þ=dt; the parameter e; and the
step-size, h ¼ Dt: Figure 1 shows a typical result. In summary, if 05e91; then all initial
conditions ðx0; y0Þ lead to an asymptotic approach in time to a limit-cycle. The numerical
derived value for the amplitude was determined to be a ¼ 1�826 which is in excellent
agreement with that given in equation (16).

It should be clear, from the work presented here, how to proceed to calculate analytical
approximations to periodic solutions of other ‘‘fractional’’ non-linear oscillator equations.
However, for these cases, in general, the method of harmonic balance must be used [1]. An
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example of such an equation is

.xx þ x1=3 ¼ eð1� x2Þð ’xxÞ1=3: ð17Þ
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